Extreme Values#
Part of a series: Stochastic fundamentals.
Follow reading here
Consider (again) a sequence of iid random variables \(X_1, X_2, ...\). Extreme value theory analyzes the probabiltiy of finding a certain [maximum]{.ul}
\(\begin{aligned} M_n &= \max (X_1, X_2, ..., X_n) \end{aligned}\)
after \(n\) repetitions.
Why is this important?
If you want to build a nuclear power plant at the Japanese Eastern Coast, you have to know which maximum flood you should expect during a long time span (\(> 100\) years) at this point. The Tsunami waves at Fukushima on 11.3.2011 reached \(> 13\)m, while the seawall was lower than \(10\)m.
Can the observed summer heat waves (e.g., 27 July 2013 in Germany) be attributed to Climate Change or are they just natural extreme events?
\(\rightarrow\) See [Wergen et al., 2014]
Let us try to calculate the CDF for \(M_n\). We have
\(\begin{aligned} P(M_n \leq z) &= P(X_1 \leq z, X_2 \leq z, \dots, X_n \leq z)\\ &= P(X_1 \leq z) P(X_1 \leq z) \dots P(X_1 \leq z)\\ &= \left[ F(z) \right]^n \end{aligned}\)
What can we say about the limit of large n? Obviously the maximum will increase with n so we have to do some rescaling. The question is thus: Can we find a CDF \(G(z)\) such that $\(\begin{aligned} P((M_N - b_n) | a_n \leq z) \xrightarrow{n \rightarrow \infty} G(z)\end{aligned}\)\( for some sequence of numbers \)a_n, b_n\( with \)a_n > 0$?
Example: Exponential Distribution#
\(\begin{aligned} f_x(\kappa) &= \left\{\begin{array}{ l l } \lambda \cdot e^{- \lambda \kappa} & \kappa \geq 0 \\ 0 & \kappa < 0 \end{array}\right. \end{aligned}\)
\(\begin{aligned} F_x(\kappa) &= \left\{\begin{array}{ l l } 1 - e^{- \lambda \kappa} & \kappa \geq 0 \\ 0 & \kappa < 0 \end{array}\right. \end{aligned}\)
Can we find \(a_n, b_n, G(\kappa)\) such that
\(\begin{aligned} F^n (a_n \kappa + b_n) &\xrightarrow{n \rightarrow \infty} G(\kappa)\\ \left( 1- e^{-\lambda(a_n \kappa + b_n)} \right)^n &\xrightarrow{n \rightarrow \infty} G(\kappa)? \end{aligned}\)
Take the log
\(\begin{aligned} n \cdot \ln{\left( 1 - e^{- \lambda (a_n \kappa + b_n)} \right)} &\xrightarrow{n \rightarrow \infty} \ln G(\kappa)? \end{aligned}\)
Taylorexpansion for the logarithm
\(\begin{aligned} n e^{-a_n \kappa - b_n} &\xrightarrow{n \rightarrow \infty} - ln G(\kappa)? \end{aligned}\)
We can make the left-hand side n-independent by choosing
\(\begin{aligned} b_n &= \ln n \Leftrightarrow n e^{-b_n} = 1 \end{aligned}\)
Then
\(\begin{aligned} e^{-a_n \kappa} &\xrightarrow{n \rightarrow \infty} - \ln G(\kappa)\end{aligned}\)
simply setting \(a_n = 1\) then yields
\(\begin{aligned} G(\kappa) &= e^{-e^{-\kappa}} \end{aligned}\)
Theorem (Fischer- Tippet-Gnedenko) Let \(X_1, X_2, \dots, X_n\) be a sequence of iid random variables and \(M_n = max(X_1, X_2, \dots, X_n)\). If a sequence of real number \((a_n, b_n)\) with \(a_n > 0\) existis such that
\(\begin{aligned} \lim_{n\to\infty} P\left( \frac{M_n-b_n}{a_n} \leq z \right) &= G(z) \end{aligned}\)
with a non-degenerate CDF \(G(z)\), then \(G(z)\) does not belong to one of the following three families:
Weibull (type 3): \(\begin{aligned} G(z) &= \left\{ \begin{array}{ll} e^{-(-z)^\alpha} & z < 0 \\ 1 & z \geq 0 \end{array} \right. \end{aligned}\)
Gumbel: \(\begin{aligned} G(z) &= \begin{array}{ll} e^{-e^{-z}} & z \in \mathbb{R} \end{array} \end{aligned}\)
Fréchet: \(\begin{aligned} G(z) &= \left\{ \begin{array}{ll} 0 & z \leq 0 \\ e^{-z^{-\alpha}} & z > 0 \end{array} \right. \end{aligned}\)
References#
- WKR14
Gregor Wergen, Joachim Krug, and Stefan Rahmstadt. 2014. URL: https://www.spektrum.de/magazin/klimarekorde/1216444#.